

The Effects of the Solar Eclipse on Radio Waves

Arthur Fumarola, Brookdale Community College

Objective

This study was conducted to analyze how reduced solar radiation during eclipses alters ionospheric ionization and radio propagation.

Background

Radio waves rely on the ionosphere for long-distance communication.

Electromagnetic waves (3 kHz-300 GHz) for communication/navigation.

Low frequencies (3–30 kHz): Reflected by D-layer (absorbed during daytime).

High frequencies (3–30 MHz): Reflected by E/F layers. **lonosphere layers:**

D-layer (60–90 km): Absorbs low frequencies; dissipates at night.

E/F layers (90+ km): Reflect high frequencies.

Ionization drops during eclipses, mimicking nighttime conditions.

Solar eclipses Mimics nighttime ionization loss in minutes, not hours.

D-layer impact:

Ionization drops → reduced absorption → enhanced LF/MF signals (AM radio).

Temperature falls by **3–10° C** in the shadow path.

"Bow wave": Acoustic-gravity waves in the ionosphere precede totality.

Path: Fort Collins, $CO \rightarrow New Jersey (1,622 miles).$ Eclipse intersection: Ohio (88% obscuration in NJ).

Expected behavior: Signal strength rises as D-layer ionization plummets.

Research

Timing

Totality: 19:12–19:16 UTC (2024 eclipse).

Comparison: 2017 eclipse data (8-hour recording).

Tools

Software-defined radio (SDR) and Linux-based audio recording.

Custom python programs to analyze phase/amplitude changes.

Pre-totality "Bow wave": lonospheric disturbance 20+ mins before totality.

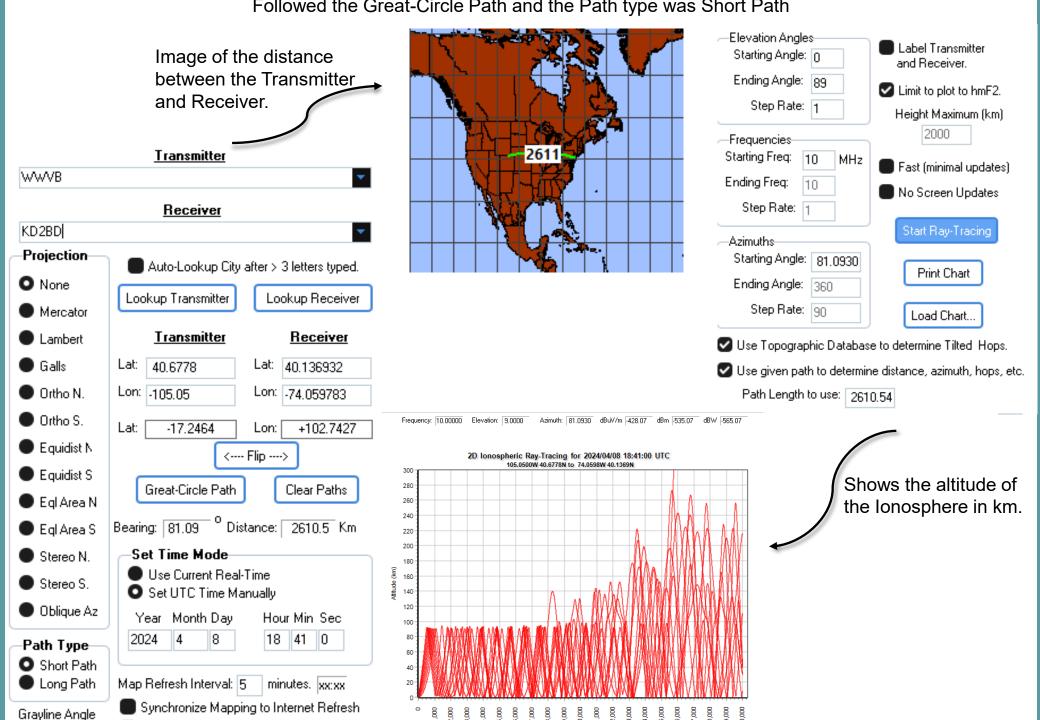
Signal strength spike: 6.2 dB increase at 60 kHz (WWVB).

Phase shift: Path lengthened as D-layer altitude rose. **Ripples in amplitude:** Caused by interference between:

Ground wave - direct path.

Sky wave - ionosphere-reflected path.

Peak disruption: During maximum obscuration (88% in NJ).


2024: Near solar maximum → stronger ionization → larger signal swings.

2017: Solar minimum \rightarrow milder effects.

Evidence: Phase shifts were 30% larger in 2024.

Research Continuation

Study was on April 8th, 2024, at 18:41 UTC Transmitter was located at Latitude: 40.6778 and Longitude:-105.05 Receiver was located at Latitude: 40.1369 and Longitude: -74.0598 Followed the Great-Circle Path and the Path type was Short Path

Implementation

Lock Antenna Bearings to Chosen Path

+0.4145 13583 00110101000011 +0.5396 17680 01000101000100

+0.9086 29771 01110100010010 +0.9587 31413 01111010101101

+0.9894 32419 011111101010001 +1.0000 32767 01111111111111

-0.1349 61113 111011110111100 -0.2743 56548 110111001110016

+0.8439 27652 0110110 +0.7591 24875 011000

-0.7498 40966 -0.8361 38137

-0.9055 35862 -0.9566 34189

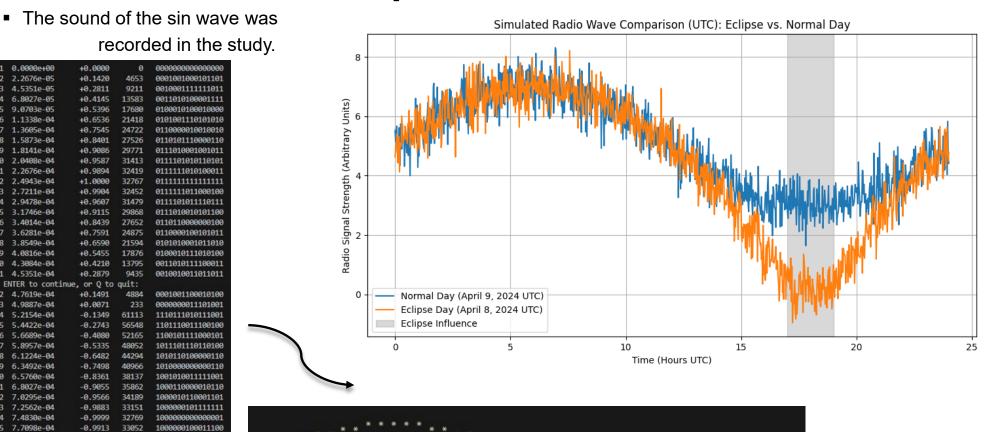
-0.9626 33992 -0.9144 35572

-0.8477 37759 -0.7637 40509

-0.9883

ENTER to continue, or Q to quit: 22 4.7619e-04 +0.1491 4884 23 4.9887e-04 +0.0071 233

-20.0


4 6.8027e-05 5 9.0703e-05

9 1.8141e-04 10 2.0408e-04

29 6.3492e-04

31 6.8027e-04 32 7.0295e-04

36 7.9365e-04 38 8.3900e-04 39 8.6168e-04

Sin wave of the radio waves on the day of the eclipse

Results

Low-frequency enhancement: WWVB signal clarity improved by **15%**.

High-frequency disruption: Ham radio (HF) signals weakened temporarily.

Temperature correlation: Signal changes matched local temp drops.

"Bow wave" timing: lonospheric response began earlier than modeled.

Multi-path ripples: Not fully explained by existing models.

Limitations

WWVB antenna damage: Reduced power (30 kW vs. 70 kW) in 2024.

Cloud cover: Low clouds in NJ may have affected local observations.

Future Work

- Analyze 2023 annular eclipse data for partial-shadow
- Model "bow wave" dynamics using atmospheric gravity wave theory.

Conclusions

Solar eclipses dramatically alter ionospheric behavior, with measurable impacts on radio waves. Low frequences waves benefit and become clearer, while high frequences degrade. Solar cycle phase significantly modulates effects.

References

Magliacane, J. (2024, May 19). Solar Eclipse 2024 LF Radio Propagation Qsl.net. https://www.qsl.net/kd2bd/2024_eclipse.html

Zhang, H., et al. (2024, May 29). Multi-Instrument Observations of the Ionospheric Response Caused by the 8 April 2024 Total Solar Eclipse (F. Giannattasio, Ed.) [Review of Multi-Instrument Observations of the Ionospheric Response Caused by the 8 April 2024 Total Solar Eclipse]. Mdpi.com. https://www.mdpi.com/2072-

Gautam, S., et al. (2024, August 24). Ionospheric response to the 08 April 2024 total solar eclipse over United States: a case study [Review of Ionospheric response to the 08 April 2024 total solar eclipse over United States: a case study]. Link.springer.com. https://link.springer.com/article/10.1007/s10509-024-04372-w

Kunduri, B. S. R., et al. (2024). HF Radar Observations and Modeling of the Impact of the 8 April 2024 Total Solar Eclipse on the Ionosphere-Thermosphere System Geophysical Research Letters, 51(24). https://doi.org/10.1029/2024gl112484

Acknowledgements

This work was supported by the New Jersey Space Grant Consortium and Brookdale Community College. I would like to thank my mentors Kevin Squires and John Magliacane, along with my advisors Ana Teodorescu and Nancy Cizin.

